Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

0bytes 2018-05-04

本文实例讲述了Python实现正弦信号的时域波形和频谱图。分享给大家供大家参考,具体如下:

# -*- coding: utf-8 -*-
# 正弦信号的时域波形与频谱图
import numpy as np
import matplotlib.pyplot as pl
import matplotlib
import math
import random
row = 4
col = 4
N = 500
fs = 5
n = [2*math.pi*fs*t/N for t in range(N)]  # 生成了500个介于0.0-31.35之间的点
# print n
axis_x = np.linspace(0,3,num=N)
#频率为5Hz的正弦信号
x = [math.sin(i) for i in n]
pl.subplot(221)
pl.plot(axis_x,x)
pl.title(u'5Hz的正弦信号',fontproperties='SimHei')
pl.axis('tight')
#频率为5Hz、幅值为3的正弦+噪声
x1 = [random.gauss(0,0.5) for i in range(N)]
xx = []
#有没有直接两个列表对应项相加的方式??
for i in range(len(x)):
  xx.append(x[i]*3 + x1[i])
pl.subplot(222)
pl.plot(axis_x,xx)
pl.title(u'频率为5Hz、幅值为3的正弦+噪声',fontproperties='SimHei')
pl.axis('tight')
#频谱绘制
xf = np.fft.fft(x)
xf_abs = np.fft.fftshift(abs(xf))
axis_xf = np.linspace(-N/2,N/2-1,num=N)
pl.subplot(223)
pl.title(u'频率为5Hz的正弦频谱图',fontproperties='SimHei')
pl.plot(axis_xf,xf_abs)
pl.axis('tight')
#频谱绘制
xf = np.fft.fft(xx)
xf_abs = np.fft.fftshift(abs(xf))
pl.subplot(224)
pl.title(u'频率为5Hz的正弦频谱图',fontproperties='SimHei')
pl.plot(axis_xf,xf_abs)
pl.axis('tight')
pl.show()

运行效果:

Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

相关推荐