迭代器和生成器

shenxiuwen 2020-02-03

迭代: 访问集合元素的一种方式. 通常把使用for循环取数的过程称为遍历, 也叫迭代.

可迭代对象(Iterable): 把可以通过for…in…这类语句迭代读取?条数据供我们使?的对象称之为可迭代对象.

很多容器都是可迭代对象(iterable), 并不是所有容器都是可以迭代的;但凡可以返回一个迭代器的对象都是可迭代对象;

容器: 这个称呼在其他博客上看到的, 了解下; 一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中 . 常见的str, list, set, dict都是容器

可以使用 isinstance() 判断一个对象是否是 Iterable 对象

12345678
from collections import Iterableprint(isinstance([], Iterable))	print(isinstance((), Iterable))	# 判断元组print(isinstance({}, Iterable)) # 判断字典print(isinstance("", Iterable))	# 判断字符串print(isinstance(100, Iterable)) # 判断整数print(isinstance(False, Iterable))	# 判断boolean

1.迭代器iterator

迭代器: 任何实现了__iter____next__()(python2中实现next())方法的对象都是迭代器;

__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常

在遍历过程中就应该有一个“人”去记录每次访问到了第几条数据,以便每次迭代都可以返回下一条数据。我们把这个能帮助我们进行数据迭代的“人”称为迭代器(Iterator)。可迭代对象的本质就是提供一个这样的中间“人”即迭代器帮助我们对其进行迭代遍历使用。

  1. 可迭代对象的本质就是提供一个这样的中间“人”即迭代器帮助我们对其进行迭代遍历使用
  2. 可迭代对象是一个具备了__iter__方法的对象,通过__iter__方法获取可迭代对象的迭代器

迭代器本质上是一个产生值的工厂,每次向迭代器请求下一个值,迭代器都会进行计算出相应的值并返回。

可以通过iter()函数获取这些可迭代对象的迭代器, 然后可以对获取到的迭代器不断使用next()函数来获取下一条数据。

12345678
li = [11, 22, 33, 44, 55]# 通过iter() 取得可迭代对象的迭代器iterator = iter(li)# 通过next()函数取得iterator迭代器指向的下一个值print(next(iterator))print(next(iterator))

1.1 __iter____next__

迭代器首先是一个可迭代对象, 可迭代对象必须实现__iter__方法

迭代器同时要能够返回可迭代对象的下一个值,所以当调用next()函数的时候,需要能够返回值,所以必须定义next方法;

1.2 for循环

for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束。

1.3 代码实例:

12345678910111213141516171819202122232425262728293031323334353637
import collectionsclass (object):    def __init__(self):	        self.names = []	# 声明一个列表        self.current = 0	# 记录迭代器迭代的位置, 默认是0 ,即从起始位置开始    def add(self, name):        self.names.append(name)    def __iter__(self):        """通过该方法取得迭代器对象"""        return self    def __next__(self):        """取得下一个迭代的值"""        if self.current < len(self.names):            name = self.names[self.current]            self.current += 1            return name        else:            raise StopIteration# 创建MyClassmate实例my_classmate = MyClassmate()my_classmate.add("小王")my_classmate.add("小李")my_classmate.add("小张")# 测试MyList是不是可迭代对象print(isinstance(my_classmate, collections.Iterable))# 遍历数据for name in my_classmate:    print(name)

1.4 应用场景

斐波拉契序列

12345678910111213141516171819202122232425262728293031
class FibIterator(object):    """斐波那契数列迭代器"""    def __init__(self, n):        """初始化属性"""        self.n = n	# 记录生成fibonacci的数列的个数        self.current_index = 0	# 记录当前遍历的下标                # 记录fibonacci数列前面的两个值        self.num1 = 0        self.num2 = 1    大专栏  迭代器和生成器ion">def __next__(self):        """被next()函数调用来获取下一个数"""        if self.current_index < self.n:            num = self.num1            self.num1, self.num2 = self.num2, self.num1 + self.num2            self.current_index += 1            return num        else:            raise StopIteration    def __iter__(self):        """迭代器的__iter__返回自身即可"""        return selfif __name__ == '__main__':    fib = FibIterator(10)    for num in fib:        print("  ", num, end="")

运行结果: 0 1 1 2 3 5 8 13 21 34

2.生成器generator

生成器: 可以理解为一个特殊的迭代器。调用这个函数就得到一个迭代器,生成器中的yield相当于一个断点,执行到此返回一个值后暂停,从而实现next取值。

  • 任意生成器都是迭代器(反过来不成立)
  • 任意生成器,都是一个可以延迟创建值的工厂

它不需要再像上面的类一样写__iter__()__next__()方法了,只需要一个yiled关键字。

2.1 创建生成器方法

2.1.1 把列表生成式的[] 改成()

12345678
# 参考列表生成式L=[x*2 for x in range(6)]print(L)	# 输出结果:[0, 2, 4, 6, 8, 10]# 把[] 改为() :就是一个简单的列表生成器G=(x*2 for x in range(6))print(G)	# 输出的是生成器对象: <generator object <genexpr> at 0x7ff7f8bbd5c8>

2.1.2 列表生成式

用生成器实现斐波拉契序列

12345678
def fib():    """斐波拉契函数"""    prev, curr = 0, 1    while True:        yield curr        prev, curr = curr, curr + prevf = fib()print(list(islice(f,0, 10)))	# 输出结果是[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。

另外一种写法:

12345678910111213141516171819
def fib(n):    curr_index = 0    num1, num2 = 0, 1    while curr_index < n:         """         1. 假如函数中有yield,则不再是函数,而是生成器         2. yield 会产生一个断点         3. 假如yield后面紧接着一个数据,就会把数据返回,            作为next()函数或者for ...in...迭代出的下一个值        """        yield num1        num1, num2 = num2, num1 + num2        curr_index += 1        if __name__ = '__main__':    G = fib(5)	#  # 假如函数中有yield,则不再是函数,而是一个生成器    #  生成器是一种特殊的迭代器    for num in G    print("", num, end="")	# 输出0 1 1 2 3 5

2.2 生成器总结

  • 使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)
  • yield关键字有两点作用:
    • 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    • 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
  • 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)

2.3 使用send

我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。

执行到yield时,gen函数会暂停,返回i的值; temp接收下次obj.send(“haha”)发送过来的值,next(obj)等价obj.send(None)

123456789101112131415161718192021222324
def gen():    i = 0    while i < 5:        temp = yield i        print(temp)        i += 1if __name__ == '__main__':        obj = gen()	# 取得生成器对象    # 使用next()唤醒生成器    print(next(obj))    print(next(obj))    # 使用send唤醒生成器 ,在唤醒的同时向断点处传入一个附加数据    print(obj.send("haha"))        # 使用next()唤醒生成器    print(next(obj))    # 使用send唤醒生成器 ,在唤醒的同时向断点处传入一个附加数据    print(obj.send("python"))

相关推荐