【转】漫谈经典排序算法:五、线性时间排序(计数、基数、桶排序)比较

natloc 2015-05-01

转自: http://blog.csdn.net/touch_2011/article/details/6787127

1、计数排序

          1.1 引出

            前面四篇博客中,所有的排序算法都存在比较,都可以称为”比较排序“。比较排序的下界为o(nlogn)。那么有没有时间复杂度为o(n)的线性时间排序算法呢?计数排序便是很基础的一种线性时间排序,它是基数排序的基础。基本思想是:对每一个元素x,确定小于x的元素个数,就可以把x直接放到它在有序序列中的位置上。过程描述:假设待排序序列a中值的范围[0,k],其中k表示待排序序列中的最大值。首先用一个辅助数组count记录各个值在a中出现的次数,比如count[i]表示i在a中的个数。然后依次改变count中元素值,使count[i]表示a中不大于i的元素个数。然后从后往前扫描a数组,a中的元素根据count中的信息直接放到辅助数组b中。最后把有序序列b复制到a。

#include<stdio.h>
#include<stdlib.h>

//计数排序,n为数组a的记录个数,k为记录中最大值
void countingSort(int *a,int n,int k)
{
	int i;
	int *count=(int *)malloc(sizeof(int)*(k+1));
	int *b=(int *)malloc(sizeof(int)*(n+1));
	//初始化计数数组count
	for(i=0;i<=k;i++)
		*(count+i)=0;
	//计算等于a[i]的记录个数
	for(i=1;i<=n;i++)
		(*(count+a[i]))++;
	//计算小于等于a[i]的记录个数
	for(i=1;i<=k;i++)
        *(count+i) += *(count+i-1);
	//扫描a数组,把各个元素放在有序序列中相应的位置上
	for(i=n;i>=1;i--){
		*(b + *(count + a[i]))=a[i];
        (*(count+a[i]))--; 
	}
	for(i=1;i<=n;i++)
		a[i]=*(b+i);
	free(count);
	free(b);
}

void main()
{
	int i;
	int a[7]={0,3,5,8,9,1,2};//不考虑a[0]
	countingSort(a,6,9);
	for(i=1;i<=6;i++)
		printf("%-4d",a[i]);
	printf("\n");
}

 1.2 效率分析

从代码来看,计数排序有5个for循环,其中三个时间是n,两个时间是k。所以总时间T(3n+2k),时间复杂度o(n+k),不管是在最坏还是最佳情况下,此时间复杂度不变.此外,计数排序是稳定的,辅助空间n+k,这个空间是比较大的,计数排序对待排序序列有约束条件(如前面我们假设待排序序列a中值的范围[0,k],其中k表示待排序序列中的最大值),元素值需是非负数,k太大的话会大大降低效率。这里要注意的是 “扫描a数组把各个元素放在有序序列相应的位置上” 这步为什么要从后往前扫描a数组呢?大家想一想计数排序的过程就知道,因为从前扫描导致计数排序不稳定,前面说了,计数排序是基数排序的基础,所以它的稳定性直接影响到基数排序的稳定。

2、基数排序

          2.1 引出

            在计数排序中,当k很大时,时间和空间的开销都会增大(可以想一下对序列{8888,1234,9999}用计数排序,此时不但浪费很多空间,而且时间方面还不如比较排序)。于是可以把待排序记录分解成个位(第一位)、十位(第二位)....然后分别以第一位、第二位...对整个序列进行计数排序。这样的话分解出来的每一位不超过9,即用计数排序序列中最大值是9.

          2.2 代码

#include<stdio.h>
#include<stdlib.h>
#include<math.h>


//计数排序,n为数组a的记录个数,k为记录中最大值,按第d位排序
void countingSort(int *a,int n,int k,int d)
{
	int i;
	int *count=(int *)malloc(sizeof(int)*(k+1));
	int *b=(int *)malloc(sizeof(int)*(n+1));
	//初始化计数数组count
	for(i=0;i<=k;i++)
		*(count+i)=0;
	//计算等于a[i]在d位(a[i]/(int)pow(10,d-1)%10)的记录个数
	for(i=1;i<=n;i++)
        (*(count+a[i]/(int)pow(10,d-1)%10))++;

	//计算小于等于a[i]在d位(a[i]/(int)pow(10,d-1)%10)的记录个数
	for(i=1;i<=k;i++)
        *(count+i) += *(count+i-1);
	//扫描a数组,把各个元素放在有序序列中相应的位置上
	for(i=n;i>=1;i--){
		*(b + *(count + a[i]/(int)pow(10,d-1)%10))=a[i];
        (*(count+a[i]/(int)pow(10,d-1)%10))--; 
	}
	for(i=1;i<=n;i++)
		a[i]=*(b+i);
	free(count);
	free(b);
}


//基数排序,n为数组a的记录个数,每一个记录中有d位数字
void radixSort(int *a,int n,int d)
{
	int i;
	for(i=1;i<=d;i++){
	    countingSort(a,6,9,i);
	}
}

void main()
{
	int i;
	int a[7]={0,114,118,152,114,111,132};//不考虑a[0]
	radixSort(a,6,3);
	for(i=1;i<=6;i++)
		printf("%-4d",a[i]);
	printf("\n");
}

 2.3 效率分析

基数排序时间T(n)=d*(2k+3n),其中d是记录值的位数,(2k+3n)是每一趟计数排序时间,上文分析过了,k不超过9,d的值一般也很小,k、d都可以看成是一个很小的常数,所以时间复杂度o(n)。最坏最佳情况并不改变时间复杂度。基数排序是稳定的。辅助空间同计数排序k+n.

3、桶排序

          3.1 引出

            同计数排序一样,桶排序也对待排序序列作了假设,桶排序假设序列由一个随机过程产生,该过程将元素均匀而独立地分布在区间[0,1)上。基本思想是:把区间[0,1)划分成n个相同大小的子区间,称为桶。将n个记录分布到各个桶中去。如果有多于一个记录分到同一个桶中,需要进行桶内排序。最后依次把各个桶中的记录列出来记得到有序序列。

          3.2 代码

#include<stdio.h>
#include<stdlib.h>

//桶排序
void bucketSort(double* a,int n)
{
	//链表结点描述
	typedef struct Node{
		double key;
        struct Node * next; 
	}Node;
	//辅助数组元素描述
	typedef struct{
         Node * next;
	}Head;
	int i,j;
    Head head[10]={NULL};
	Node * p;
	Node * q;
	Node * node;
	for(i=1;i<=n;i++){
		node=(Node*)malloc(sizeof(Node));
		node->key=a[i];
		node->next=NULL;
		p = q =head[(int)(a[i]*10)].next;
		if(p == NULL){
			head[(int)(a[i]*10)].next=node;
			continue;
		}
		while(p){
            if(node->key < p->key)
				break;
			q=p;
			p=p->next;
		}
		if(p == NULL){
			q->next=node;
		}else{
			node->next=p;
			q->next=node;
		}
	}
	j=1;
	for(i=0;i<10;i++){
    	p=head[i].next;
		while(p){
			a[j++]=p->key;
			p=p->next;
		}
	}
}

void main()
{
	int i;
	double a[13]={0,0.13,0.25,0.18,0.29,0.81,0.52,0.52,0.83,0.52,0.69,0.13,0.16};//不考虑a[0]
	bucketSort(a,12);
	for(i=1;i<=12;i++)
		printf("%-6.2f",a[i]);
	printf("\n");
}

   3.3 效率分析

当记录在桶中分布均匀时,即每个桶只有一个元素,此时时间复杂度o(n)。因此桶排序适合对很少重复的记录排序。辅助空间2n。桶排序是稳定的排序,实现比较复杂。

相关推荐