awei00 2019-06-21
在 5G 战火纷飞之际,无论是基础运营商、芯片商还是手机厂商,均以排兵布阵准备良久,只为等待“万箭齐发”的最佳时机。且同时,为了加快商用的步伐,本月初,工业和信息化部正式向中国电信、中国移动、中国联通、中国广电颁发了 4 张 5G 商用牌照。
不过,5G 的发展并没有想象中那么快,工信和信息化部信息通信发展司司长闻库也曾表示,“5G 全面商用还需耐心等待。网络建设从无到有需要过长,建得好不是 5G 的目的,用的好才是 5G 真正的目的。”
此前,我国提出的是 2017 年展开 5G 网络第二阶段测试,2018 年大规模试验组网,并在此基础上于 2019 年启动 5G 网络建设,最快 2020 年正式推出商用服务。如今看来,我国的各项建设均在有条不紊的进行中。但在此建设过程中,我们也发现,相比 4G,5G 所需建设的基站数量远超乎我们想象。在这一点上,据悉,作为世界上第一个开通 5G 商用的国家,韩国将于今年内共建设 23 万座 5G 基站;德国计划在 2021 年建设 40000 个 5G 基站;横纵对比,国内 5G 基站的基本数量已到达 581.4 万,远超过 4G 基站数量。
对此,我们不禁发问,以大容量、低延时、高带宽为特性的 5G,为何需要建立如此庞大数量的基站?这其中的缘由又是为何?接下来,我们将从爱立信5G 专家、3GPP 5G NR 标准推动及制定者精心撰写的《5G NR标准:下一代无线通信技术》一书中探寻到 5G 关键技术毫米波的相关奥秘。
毫米波射频技术
毫米波通信引入了更大的带宽,而更大的带宽就会对数字域和模拟域之间的转换发起更高的挑战。业内广泛使用基于信号噪声失真比(Signal-to-Noise-and-Distortion Ratio,SNDR)的Schreier品质因数(Schreier Figure-of-Merit,Schreier FoM)作为模数转换器的度量,参见:
这里, SNDR的单位是dB,功耗P的单位是W,以及奈奎斯特抽样频率fs的单位是Hz。图19-1研究结果展示了大量商业ADC的Schreier品质因数和对应奈奎斯特抽样频率(对绝大多数ADC就是2倍的带宽)的关系。图中的虚线标明了FoM的包络,在100MHz的抽样频率以下基本上恒定在180dB。对于恒定的品质因数,SNDR每增加3dB或者带宽增加一倍,都会导致功耗翻倍。对100MHz以上的抽样频率,会有一个额外的10dB/decade的损失,意味着带宽增加一倍,功耗是原先的4倍。
图19-1 ADC的Schreier品质因数
尽管随着集成电路技术的持续发展,未来的高频ADC品质因数包络会缓慢地推高。但是带宽在GHz范围的ADC依然无法避免功率效率低下的问题。NR毫米波引入的大带宽以及天线阵列配置都会引入很大的ADC功耗。因此对基站和终端都需要考虑如何降低SNDR的要求。
在同样的精度和速度要求下DAC相比ADC较为简单。而且ADC一般会引入循环处理而DAC不会。因此DAC在研究领域的关注度较低。尽管DAC结构和ADC有很大不同,DAC也可以用品质因数来描述。类似于ADC的情况,大带宽和对发射机的不必要的苛刻的SNDR要求,会导致更高的DAC功耗。
本振和相位噪声
本振(Local Oscillator,LO)是现代通信系统一个必不可少的组成部分。一个描述本振性能的参数是相位噪声。简单地说,相位噪声就是本振产生信号在频域上的稳定程度的衡量。相位噪声的定义是在一个给定频率偏移Δf处的dBc/Hz值,描述的是本振产生信号和期望频率之间偏差Δf的可能性。
本振的相位噪声会显著影响系统性能。如图19-2所示,以单载波为例,在加入了加性高斯白噪声(Additive White Gaussian Noise,AWGN)建模的热噪声之后,比较了有相位噪声和没有相位噪声两种情况下的16QAM星座图。对一个给定的符号错误率门限,相位噪声会限制最高的调制阶数,如图19-2所示。换句话说,不同的调制阶数会对本振的相位噪声提出不同的要求。
图19-2 有相位噪声(右)和无相位噪声(左)的单载波16QAM信号
自由振荡器和锁相环的相位噪声特性
生成频率最常用的电路是压控振荡器(Voltage-Controlled Oscillator,VCO)。图19-3通过一个模型来建模自由振荡的VCO对不同频率偏移的特性。
图19-3 一个典型的自由振荡VCO 相位噪声特性[57]:相位噪声dBc/Hz(Y 轴)和频率
这里f0是振荡器频率,Δf是频率偏移,PS是信号强度,Q是谐振器的加载品质因子,F是经验拟合参数(对应的物理意义是噪声系数),而Δf1/f3有源设备1/f噪声的拐点频率。
根据图19-3所示公式,可以得出:
因此在设计VCO的时候,需要平衡几个相关参数。为了比较不同半导体技术和电路拓扑下VCO的性能,往往使用品质因数(考虑了功耗的影响)来进行公平的比较:
其中是PNvco(f)VCO的相位噪声,单位为dBc/Hz;是功耗,单位为W。这个公式值得注意的一点是相位噪声和功耗(线性值)都与f20成正比。因此为了保持一定的相位噪声,增加频率N倍则意味着功耗需要增加N2倍(假定品质因数一定)。
一个通常的抑制相位噪声的做法是使用锁相环(Phase Locked Loop,PLL)。基本结构包括VCO、分频器(frequency divider)、相位检测器(phase detector)、环路滤波器(loop filter)和一个高稳定性低频参考源(比如晶振)。锁相环输出的相位噪声来源包括:
图19-4 使用锁相环的倍频至28GHz的VCO的本振相位噪声测量(Ericsson AB,经许可使
图19-4提供了一个典型的毫米波本振的特性,显示了一个28GHz本振相位噪声的测量结果。该本振在低频使用了锁相环然后倍频到28GHz。可以观察到有4个不同特点的区间:
毫米波信号生成的挑战
当振荡器频率从3GHz提升到30GHz,相位噪声也会随之提升。对特定频率偏移,相位噪声会恶化20dB数量级。这显然会限制毫米波可用调制模式的最高阶,最终限制毫米波的最高频谱效率。
毫米波本振同样受限于品质因子Q和信号强度Ps。Lesson方程指出,为了获得较低的相位噪声,必须提高品质因子Q和信号强度Ps,同时降低有源器件的噪声系数。不幸的是,当本振频率提高的时候,上述三个方面往往朝着不好的方向变化:
基于这些原因,在实现毫米波本振的时候,一般都是利用一个相对低频的锁相环然后倍频到目标频点上。
除了上述的挑战,1/f噪声上变频也提升了临近载波相位噪声。当然1/f噪声和实现技术非常相关,相比于垂直双极器件(vertical bipolar device)如双极和HBT,一些平面器件诸如CMOS和高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)会产生更高的1/f噪声。
为了完全集成MMIC/RFIC VCO和锁相环,可以采用各种技术(从CMOS和BiCMOS到III-V族材料)。但是因为较低的1/f噪声和较高的击穿电压,一般InGaP HBT是最为常用的。尽管有较为严重的1/f噪声,少数情况下也会采用pHEMT设备。一些方案使用GaN FET结构,尽管可以获得很高的击穿电压,但是1/f噪声甚至会比GaAS FET器件设备还要高。图19-5总结了不同的半导体技术,在100kHz频偏范围内相位噪声性能和振荡器频率的关系。
图19-5 不同的半导体技术下相位噪声性能和振荡器频率的关系
最近的研究成果揭示了本振噪底对系统性能的影响。在符号速率比较低的情况下噪底对系统影响不大。但是当符号速率提高之后,比如5G NR,平坦噪底开始对调制后的信号EVM产生影响。如图19-6所示为不同的符号速率和不同的噪底水平下测量发射信号的EVM结果。这类观察意味着为宽带通信进行毫米波本振系统设计的时候,需要额外关注技术的选择、VCO拓扑和倍频系数,以期得到合理的较低相位噪声的噪底。
图19-6 通过对7.5GHz上发射64QAM信号测量得到符号速率和本振噪底的关系
5G 在物联网领域的技术应用实践
以上仅为毫米波技术的部分,而为了帮助通信从业者、物联网开发者、嵌入式程序员们更好了解并应用 5G 技术,CSDN 作为主办方特别策划以“5G 在物联网领域的技术应用实践”为主题的沙龙活动,邀请到来自爱立信中国研发部多天线高级专家朱怀松、爱立信中国研发部主人系统工程师刘阳,基于全新的 5G 标准,分享其在实践中帮助解决物联网各式各样需求的方案。
从而让开发者们得以深入了解无线物联网需求的多样性,以及 5G 是如何通过一个统一的框架来满足未来的物联网领域的需求的。此外,两位专家还将探讨相较几乎满足了人和互联网连接需求的 4G,5G 在应用过程中还能够提供哪些特有的功能满足物联网的应用。
除了以上两位专家,微软(中国)首席技术官韦青、北京邮电大学信息与通信工程学院多媒体技术教研中心主任&博士生导师孙松林、金山云AIoT事业部高级研发总监肖江等,也会带来精彩演讲!
点击了解更多,赶快预约直播吧!